Mark Scheme (Results) January 2011

GCE

GCE Statistics S2 (6684) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

January 2011
Publications Code UA026667
All the material in this publication is copyright
© Edexcel Ltd 2011

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod -benefit of doubt
- ft -follow through
- the symbol fwill be used for correct ft
- cao -correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw -ignore subsequent working
- awrt -answers which round to
- SC: special case
- oe -or equivalent (and appropriate)
- dep -dependent
- indep -independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

January 2011
Statistics S2 6684
Mark Scheme

Question Number	Scheme Marks
2.	
	Notes
	B1 for both H_{0} and H_{1} correct. Must use p or π (pi) B1 for writing or using $\operatorname{Bin}(10,0.2)$ M1 for finding or writing $1-\mathrm{P}(X \leq 3)$ or $\mathrm{P}(X \leq 4)=0.9672$ $\mathrm{P}(X \geq 5)=0.0328$ oe or a correct critical region A1 awrt 0.121 or $\mathrm{CR} X \geq 5$ M1 need $p<0.5$ and: correct statement using their Probability and 0.05 if one tail test or correct statement using their Probability and 0.025 if two tail test (condone a comparison with 0.05 instead of 0.025 for a two tail test). Do not allow non-contextual conflicting statements eg "significant" and "accept H_{0} " A1 ft correct contextual statement followed through from "their prob". Either a comment on whether the teacher's claim was correct or on whether the student was guessing the answers. NB if a correct contextual statement only is given for their probability then award M1 A1 If $p>0.5$ They may compare with 0.95 (one tail method) or 0.975 (two tail method) Probability is 0.8791 .

Question Number	Scheme	Marks
3. (a)	$\mathrm{E}(X)=\frac{3-1}{2}=1$	B1 cao (1)
(b)	$\operatorname{Var}(X)=\frac{(3+1)^{2}}{12}=\frac{4}{3} \mathrm{oe}$	M1A1 (2)
(c)	$\mathrm{E}\left(X^{2}\right)=\frac{4}{3}+1,=\frac{7}{3} \mathrm{oe}$	M1, A1
(d)	$\mathrm{P}(X<1.4)=0.6$	(2) B1 cao (1)
(e)	$\mathrm{P}(X<0)=0.25$ Y is number of values less than 0 $\begin{aligned} & Y \sim \operatorname{Bin}(40,0.25) \\ & \begin{aligned} \mathrm{P}(Y \geq 10) & =1-\mathrm{P}(Y \leq 9) \\ & =1-0.4395=0.5605 \end{aligned} \end{aligned}$	B1 M1A1 M1 A1 (5) [11]
	Notes	
(b)	$\text { M1 } \frac{(3-1)^{2}}{12} \text { or } \frac{(3+1)^{2}}{12} \text { or } \frac{(3--1)^{2}}{12}$ A1 awrt 1.33	
(c)	$\text { M1 "their(b)" }+[\text { "their (a)" }]^{2} \text { or } \int_{-1}^{3} \frac{x^{2}}{4} \mathrm{~d} x$ $\text { A1 awrt } 2.33$	
(e)	B1 For writing or using the probability of a negative $=0.25$ M1 Writing or use of $\mathrm{B}(40, p)$ A1 Writing or use of $\mathrm{B}(40,0.25)$ M1 Writing or using $1-\mathrm{P}(Y \leq 9)$ A1 awrt 0.561 or 0.560	

Question Number	Scheme Marks
4.	$\mathrm{H}_{0}: \lambda=8$ or $\mu=2 \quad \mathrm{H}_{1}: \lambda<8$ or $\mu<2$ B 1 B 1 Under $\mathrm{H}_{0}, X \sim \operatorname{Po}(8)$ M1 $\mathrm{P}(X \leq 3)=0.0424 \quad \quad \mathrm{CR} X \leq 3$ A1 $0.0424<0.05$, Reject H_{0}. Richard's claim is supported. M1A1ft
Notes	
	B1 for H_{0} correct. Must use λ or μ and 8 or 2 B1 for H_{1} correct. Must use λ or μ and 8 or 2 M1 for writing or using $\operatorname{Po}(8)$ - may be implied by correct CR A1 awrt 0.0424 or CR $X \leq 3$ M1 need $p<0.5$ and: correct statement using their Probability and 0.05 if one tail test or correct statement using their Probability and 0.025 if two tail test (condone a comparison with 0.05 instead of 0.025 for a two tail test). Do not allow non-contextual conflicting statements eg "significant" and "accept H_{0} " A1ft correct contextual statement followed through from "their prob". Either a comment on whether Richard's claim was correct or on whether the service has improved. NB if a correct contextual statement only is given for their probability then award M1 A1 They may compare with 0.95 (one tail method) or 0.975 (two tail method) Probability is 0.9576

Question Number	Scheme	Marks
5. (a)	$\begin{aligned} & m=-\frac{4}{0.5}=-8 \\ & \mathrm{f}(x)=4-8 x\left(^{*}\right) \\ & \mathrm{f}(x)=\left\{\begin{array}{cc} -8 x+4 & 0 \leq x \leq 0.5 \\ 0 & \text { otherwise } \end{array}\right. \end{aligned}$	M1 A1cso B1 B1 (4)
(b)	$\begin{aligned} \mathrm{F}(x) & =\int_{0}^{x}(-8 x+4) \mathrm{d} x \\ & =\left[-4 x^{2}+4 x\right]_{0}^{x} \\ \mathrm{~F}(x) & =\left\{\begin{array}{cc} 0 & x<0 \\ -4 x^{2}+4 x & 0 \leq x \leq 0.5 \\ 1 & x>0.5 \end{array}\right. \end{aligned}$	M1 M1 A1 B1 (4)
(c)	$\begin{gathered} -4 x^{2}+4 x=0.5 \\ x=\frac{1}{4}(2-\sqrt{2})=0.146 \end{gathered}$	M1 M1A1
(d)	$x=0$	B1 (1)
(e)	Positive Skew as mode<median	B1ft (1) [13]

Question Number	Scheme	Marks		
(a)	M1 for $\pm \frac{4}{0.5}$ or attempt at gradient A1cso for proceeding to given expression with no incorrect working seen B1 for top line. Must have $\mathrm{f}(x)$ and $\{$ and more than one line. Condone use of $<$. B1 for 0 otherwise and no other parts.			
(b)	M1 attempting to integrate $\left(\right.$ at least one $\left.x^{n} \rightarrow x^{n+1}\right)$ (ignore limits) M1 correct limits used or +C and either $\mathrm{F}(0)=0$ or $\mathrm{F}(0.5)=1$, may be implied by seeing $4 x-4 x^{2}$			
A1 middle line. May write $4 x-4 x^{2}$				
B1 top and bottom line			,	M1 Their F $(x)=0.5$
:---				
M1 attempting to solve - either correct use of quadratic formula				
or correct completion of the square				
A1 awrt 0.146 or $\frac{2-\sqrt{2}}{4}$ o.e	\quad	(d)	B1 for 0	
:---	:---			
(e)	B1 ft their mode and median. Need direction and correct corresponding reason OR B1 positive skew from tail on right hand side in diagram			

Question Number	Scheme	Marks
6.		
(a)	$X \sim \operatorname{Po}(2.5)$	M1A1 (2)
(b)	Cars arrive at the toll booth independently/randomly Cars arrive one at a time The rate of arrival at a toll booth remains constant at 2.5 per minute	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \end{aligned}$ (2)
(c)(i)	$\mathrm{P}(X=0)=\mathrm{e}^{-2.5}=0.0821$	B1 (1)
(c)(ii)	$\begin{aligned} \mathrm{P}(X>3) & =1-\mathrm{P}(X \leq 3) \\ & =0.2424 \end{aligned}$	M1 A1
(d)	$\begin{align*} & \text { Use of } \operatorname{Po}(10) \tag{2}\\ & 1-0.0487=0.9513 \\ & m=15 \end{align*}$	M1 M1 A1 cao (3)
(e)	$\begin{aligned} & Y \sim \mathrm{~N}(25,25) \\ & \mathrm{P}(X<15)=\mathrm{P}(Y \leq 14.5) \\ & =\mathrm{P}\left(Z \leq \frac{14.5-25}{5}\right) \\ & =\mathrm{P}(Z \leq-2.1) \\ & =0.01786 \end{aligned}$	B1B1 M1 M1 A1 A1 (6) [16]

Question Number	Scheme	Marks
(a)	M1 Poisson A1 2.5	
(b)	Any two of the statements or equivalent. At least one must be in context. Need words that imply "cars arrive" or "rate of arrival." $S C$ no context but 2 correct reasons B1B0 No context but 1 correct reason B0B0	
(c) (i)	B1 awrt 0.0821	
(ii)	M1 for writing or finding 1 $-\mathrm{P}(X \leq 3)$	
(d)	A1 awrt 0.242 M1 writing or using Po(10) M1 for 1-0.0487 or 0.9513 seen or implied by correct value for m	
(e)	B1 use of normal B1 using or seeing mean and variance of 25 These first two marks may be given if the following are seen in the correct places in the standardisation formula $: 25$ and $\sqrt{25}$ or 5 M1 for attempting a continuity correction (14 $\pm 0.5)$ or (15 $\pm 0.5)$ M1 for standardising using their mean and their standard deviation and using [14.5, 14, $13.5,15$ or 15.5] accept \pm z. A1 correct z value ± 2.1 or $\pm \frac{14.5-25}{5}$, A1 awrt 0.0179 NB use of calculator gets full marks if the answer is awrt 0.0179.	

Question Number	Scheme	Marks
7. (a)	$\begin{aligned} \int_{0}^{9} k\left(81 x-x^{3}\right) \mathrm{d} x & =1 \\ k\left[\frac{81}{2} x^{2}-\frac{1}{4} x^{4}\right]_{0}^{9} & =1 \\ k\left(\frac{6561}{2}-\frac{6561}{4}\right) & =1 \\ k & =\frac{4}{6561} * * \mathrm{ag}^{* *} \end{aligned}$	M1 M1 A1 cso (3)
(b)	$\begin{aligned} \mathrm{E}(X) & =\int_{0}^{9} k x^{2}\left(81-x^{2}\right) \mathrm{d} x \\ & =k\left[\frac{81}{3} x^{3}-\frac{x^{5}}{5}\right]_{0}^{9} \\ & =k(19683-11809.8) \\ & =4.8 \end{aligned}$	M1A1 dM1 A1 cao (4)
(c)	$\begin{aligned} \mathrm{P}(X>5) & =\int_{5}^{9} k\left(81 x-x^{3}\right) \\ & =k\left[\frac{81}{2} x^{2}-\frac{1}{4} x^{4}\right]_{5}^{9} \\ & =k\left(\frac{6561}{4}-856.25\right)=\operatorname{awrt} 0.478 \text { or } \frac{3136}{6561} \end{aligned}$	M1 M1d A1 (3)
(d)	$\begin{aligned} \mathrm{P}(\text { At least } 2 \text { queue for more than } 5 \mathrm{mins}) & =3(1-0.478)(0.478)^{2}+0.478^{3} \\ & =0.467 \end{aligned}$	M1A1ft A1 (3) [13]

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publications@inneydirect.com
Order Code UA026667 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

